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THE USE OF QUATERNIONS TO GENERALIZE THE KOLOSOV-MUSKHELISHVILI METHOD TO
THREE-DIMENSIONAL PROBLEMS OF THE THEORY OF ELASTICITY®

A.A. PIMENOV and V.I. PUSHKAREV

A boundary equation is obtained for the first fundamental problem of the
theory of elasticity using the KXolosov-Muskhelishvili method, by
replacing the field of complex numbers by the field of Hamiltonian
quaternions. A specific solution is given for the space with an
elliptical cavity, subjected to a uniform tensile force at infinity.

The elements of the algebra of generalized quaternions /1/ are as follows: 1 = exy + zi +

yj + zk. In what follows, we shall regard er, as time, i.e. ery=10%  Thus we can write
any function f{(n) in the form of an analytic function
f('fl) = oy T i + &y + aik, Gy = Ay (tr z, Y, 2z, n=1, ... 4

where @; is the scalar part, and the sum of the remaining terms is the vector part.
We can further show that

Danzoy I:]:att+axx+ayy":_a:: (1)

The solutions of Eg.(l) are harmonic functions. Using different manipulations, we can
obtain the equations

(atx + atv + atz + axu + ax: + ayz) L, = 0 (2)

whose solutions will also be harmonic functions.

We note that of all the quaternions, the most suitable one for solving the three-dimen-
sional problems may be the subspace V = {zi + yi -+ zk} whose elements are vectors of a three-
dimensional Euclidean space. In this case, however, the solutions of equations in Olyy U
and «; will not be harmonic functions.

Let us consider a three-dimensional state of stress in which the volume forces are either
equal to zero, or are constant. The state is described by three equations of equilibrium,
supplemented by boundary conditions /2/. 1In order to solve them, we shall introduce the
following stress function:

O == 2044::@r Oy = 20p0e®) O = 20100y 3)

Txy = _atxy::cpv Tz = — atxyu:(P' Ty: = —'atxxy:(P

Since the stresses are constant with respect to time, it follows that the stress function
¢ must depend linearly on time, i.e. @ (t,z,y,2) = kt - ¢o (2, y,2z) where k is a constant and
¢ (z, ¥, 2) is a function which depends on the coordinates.

If the volume forces are zero or constant, the equations of compatibility can be expressed,
in the case of a three-dimensional stress state, in the form

V20 =0, (1 +v) V2E + (9yy + 0x; + 0,2) B (4)

where v is Poisson's ratio, © and E are the sums of the normal and shear stresses, respect-
ively, and V? is the Laplace operator. Since the stresses are constant with respect to

time, we have
940 = 04E = 8,0 = 9,0 = 6,.6 =0

Supplementing Egs.(4) with given derivatives so as to obtain equations of the type (1)
and (2), we have

D8=01 (1+V)E1E+(atx+aty‘i_at:_a'axy_}_ax:':_ay:)@:O

From this it follows that © and E are harmonic functions. Therefore E must have
conjugate functions @, R, T. Then E + Qi -+ Rj + Tk will be an analytic function of % and we
can therefore write fm) =E -+ Qi + Rj + Tk. The pentuple integral in 7n of this function
represents another analytic function, say 4¥ (1). Denoting the real and imaginary parts of

¥pPrikl.Matem. Mekhan. ,55,3,422-427,1991

343



344
¥y bye, g r and t, we obtain
()= e+ qi -+ "J+fL'=TSSSBSf('])d°‘1

whence ‘l’“)(n):—i—f(n). Moreover,

Bpzy=€ -+ Osteyeqt + Granyel 7 Oppayeth =T (A dn=—2"f(n)

Equating all real parts in the first, second, etc. term, we find that Otixys € = —E,
Since e, g, r and t are conjugate functions, their differentiation with respect to Braye
will yield

atxxy:q = — 1/4E1 at.vyy:" = —1E, ‘?L\‘y::l e ]<VJE (5
attxy:q = — 1,;40v dixxwe = leY.LQs a;‘xgyzf =1 ‘-LQ
62.\?;{::’" R e 1,':1@9 aztxy:r HE — lf':lR’ ah\:\'y:f = — 1,'4R
atxw:g =1R, atxy::‘? m e VR, Byt = —1,T
0lxxyzr =T, atxw:q =—1T, at.wz:e == 17T

Taking into account the fact that ¢ is a linear function of time,

Frgee = 0 and
relations {3} for shear stresses, we can write

E=-— (atﬁcv: + ah‘xu: -+ 6ta’yy: -+ at:y::) Q= Ty T Ty:

From (5) it follows that ¢ -+e+ g+ r-1¢ is a harmonic function. Thus we have, for
any stress function ¢,
¢ =€ —~€—g-—T—1 (6)
where ¢, is a harmonic function.
We can similarly show that

@ = (atf.\'w + 3tfxxy + aftx:: '+ a:fn‘: + 8!#;}:: + E}Huyz "i' zata-xyy +
20 1xz2 + 2atyy::) ¢=0,-+ 0,40

Let us express the harmonic function © in the form of a sum of six harmonic functions

81 = (aifxg;y + a:,\‘xi}y} £ @2 = (5”11\'4,1 ’:" (?i.\‘,\'gy) ¥ (TX
63 = (att.\'z: + ﬁtxx:z) gy 94 = (afrxx: JT 6!:\;\'2:} 7
95 = (any:: + 3{1&/::) ¢, OG = (L?ttyy: ";“ 5{1,5::) ¢

containing conjugate functions B,, C, and D,. From this we find that

) =0, Bai -+ Cyj + Dk (n=1,... 0
are analytic functions of 7.
Using arguments analogous to those used in deriving (5), we obtain
¢=8+b+c+d+ 8 8)
where 6, b, ¢ and d are conjugate functions and 6, is a harmonic function.
We can combine Egs.(6) and (8) by writing

2p; =0, + 05, 2pg =0 —¢, 20 =b—gq, 2ry=c~7r, Yy=d—1
We have
e=Pit+PoFatrott ®
where p; is a harmonic function, and pg, ¢e7, and &,
conjugate functions.
Let us introduce in (9) the functions ¢, r, and
with p, and write

are suitably chosen corresponding

t, « which are harmonic and conjugate
Sy =p +qi+rg+ 4k

Then we can confirm that the real part of the function

(po+qoi +rof TR} —i—F— k) -+ 8(n)

is equal to the right-hand side of Eq.(9).

Indeed, we can write the stress function in the
form

g=Rele(mM —i—j—k+8MmI (10)
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We can also simplify, in turn, Eg.(10) and write it in the form
og=Rel[A()l, An=pot @i+ 1+ bk, pp=potae+ro+te+p
= —Pot Qo—Tot b+ rp=—po+ggtro—totTuly=—ps—go+r,+t,+ 1

where An is an analytic function, p, is a harmonic function and ¢, 7, and ¢, are appropri-
ately chosen conjugate functions.

Since Eq.(10) expresses ¢ in terms of A(n), it follows that this "hypercomplex
potential™ can alsc be used to express the stresses.

The hypercomplex function f(n) has the corresponding conjugate function [ (7). It is
clear that f(n) + 7 (@) =2Ref{n). Then we have 2¢ =A(y) + A (%), and

Oy = 0y = 0, = 2G, Ty = —Gk
Ter = —Gj, Ty, = —Gi, G = Re A® (n)

Let a region V be given in the rectangular xyz coordinate system, and let a surface (4
bounded by a three-dimensional curve A Dbe given in the region V. Let a vector F = Fou -+
Fuo + Faw  be defined at every point of the surface, where F is the resultant force with
which the material lying to the left of the surface element do acts on the material lying
to the right of do. The components of the resultant force on the surface o are:

Fx—_—SXidu, Fy= Sg?dc, F,——-SSchr

a L L

where X,Y and Z are the components of surface forces per unit area at the given point of
the boundary. Substituting into these equations instead of the stresses their values in terms
of the stress function and putting X =0, Y = —d,,,04, Z = 8,,,9,, we obtain

Fo={$1(0,2 — 9.¥) cos (n, z) -+ (.X — 8,2) cos (. y) -+
’ (9, — 0, X)cos (n, 2)]do

The surface integral over ¢ 1is equal to the curvilinear integral over the boundary A
{Stokes's formula). Taking into account the values of X, Y and Z, we obtain

P §— 0, Qun0) 1 0. Gyt

It should be noted that since X = 0, it follows that the three-dimensional contour A
coincides with the contour L, which represents the projection of the contour .» onto the
¥z plane. On moving along the contour L, from the point A,  to B,., the coordinate
dz increases and dy decreases. Hence, dy must be taken with a minus sign and

B,
- % (By,)
Fe= § d(3,40) = [Re A® ()32 ¢

Yz

We obtain the analogous formulas for F, and F. in the same manner.

The surface o can be a part of a closed boundary surface which will vield, on inter-
sections by planes, closed boundaries A in space. Projecting A onto the zy, zz and y=z
planes will yield closed boundaries L., L.. and L, in the corresponding planes. Then we
shall find that when we move from point A to point B of the boundary A 'in such a manner that
the material along the corresponding coordinate axes remains on the left-hand side at all
times, the corresponding forces will be F,, F, and F,. Let us find these forces as functions
of Ly, L, and L, , in the form

Fa 4 Fyo + Fao = ({1 (L) & + 3 (L) 0] + (1)
[foa (Lag) e + faa (L) w] 4+ [fon (L) v + foo (L) w3

where all the coefficients of u, v and w are real functions. Denoting the coordinates of
the moving point B by 1Ty Mxx and 1My when it is projected onto the corresponding coordi-
nate planes Iy, 2 and Yz, we can write the boundary conditions at the edge of the three-
dimensional plane in the form

- Re Aa(cay) (Nay) — Re As? (Nx:) — Re A;’? (nyz) = A (12)
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where A is the right-hand side of Eq.(1l1). In order to obtain from this equation the three
hypercomplex potentials, we replace the hypercomplex variables Mxy Nx. and MNy: , for any
point in the physical region, by new hypercomplex variables &y, Lx: and §,, connected by
the relation 1 = o; (%), i € {=zy, 2z, Yz} where ;(§;) are appropriately chosen functions of

;- The functions are chosen so that the points P, determined by the corresponding hyper-
complex coordinates {; in the planes [; correspond to the points P; (or map onto these
points) in the corresponding m; planes. The functions which map conformly will be chosen

in such a way that the unit circles p;=1 in the planes {; will map onto the curves L;.
It is also convenient to use here polar coordinates p;,®; instead of rectangular coordinates
B, Wi . The functions must be analytic at every point P, which maps onto the corresponding
"material" point P;. A Laurent expansion over the corresponding coordinate planes can be
used to provide such points. Then, any functions of 1; will also be functions of {;, obtained
by replacing m; by ;({;), and we have

A () = AP o, (8] = @i (G

Let us express the hypercomplex variables 7; in polar coordinates ; = r0j, Oxy = je™xy,
Oz = k'O, Oyz = je®:.  We note that o; is in fact §; for the characteristic points on unit
circles. Thus the right-hand side of EqQ.(12) can be expressed as a function of o¢;, and we
can write

A= jfxu (ny) + kfxz (ze) + jfyz (Uu:)

The function jfxy (0x) corresponds to a load applied between the points A,, and B,,
of the zy plane, which is equal to F,k. Similarly, the functions kf. (6:) and jfyz (Gy2)
correspond to the loads F.j and Fi.

After all this the boundary condition (12) will take the following form:

- Re ‘va (ny) - P‘e Pz (ze) - P‘e chZ (GUZ) = jfxll (va) + kfxz (sz) + jfyz (O'Vz) (1'3)

The three-dimensional boundary condition given is an analogue of a two-dimensional con-
dition in curvilinear coordinates /3/. We shall carry out an additional discussion for this
solution.

Let us consider one of the hypercomplex planes, for example the xy plane. Let L be a
rectilinear curve in xy, and My =A () =z ()i 4 y()j 1its equation in which ¢ varies from
o and f. We shall choose an arbitrary monotonic sequence of n -+ 1 values of & t;=a, ¢,
N A A decomposition T of the curve L into n ares Iy, ..., lnyy corresponds to
this choice. Let f(n,) =u (x, ¥)i + v(z, ¥)j be a function, single-valued and continuous on L.
We shall choose a single value of the parameter ¢ = 1;; between {; and tx+1 , and obtain
a single point [ = A(t4) = & + nxJ on every arc I;. Then we can show that

n—1

(15;11]0 éo f@Cx) (M — M) = Ef (Mey) d‘r]xy

Let L be a smooth curve. This will mean that we can find for it a parametric represen-
tation M =AM =z i+ y @) (@<t P), such, that A(f) will have a derivative con-

tinuous and not vanishing on the segment la, f]. Then the following formula will hold:
Sf(nx,,)dnx,,=8—udx—vdy+ kS—udx+udy= (14)
L L L

i1
S—ulz )y ®) @) —vlz () y D+

o
]

i
K t—vlz @),y @} +ulz @y @D de =D @IV (1) de

FR@l=iule(®), y ) +jolz@), y 0],
V(@) =iz’ () + 7y ()

where we have utilized the following property of the integrals:

P

14
g 2 Cifr (Ney) Ny = 2 Ck ka (Nxy) My

L k=1 k=1

it can also be shown that the integral theorem and integral Cauchy formula (14) for the
hyperplanes 7 will also hold.

I1f we assume that w; = o; (§;) for i (&) = H(§) + mi/L, where R; are any positive
constants and m; are positive constants less than unity, the coordinates in the corresponding
planes will be expressed in terms of relations known for the ellipses.
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Let us determine the potentials ¢; ({;) which satisfy the boundary conditions (13) for
any point {; outside the unit circle. We multiply Eq.(13) term by term by 1/(o; — ;). After
this every term will remain a function of 0; and can therefore be integrated over the unit
circles ;. Using the Cauchy integral theorem for unit circles, when §; denote the points
outside them, we obtain

b, fi(9y)
Reg; (L) = FS o, —¢.

Yy

i

i k
do;, bxuz_k" buzj—,, by2=l

Let us consider a space with an elliptical cavity which is stress-free and where the
stresses are caused by the application of uniform tensile force S whose projections on the
coordinate axes are S, §, and S, ) -

We shall seek the analytic potentials, which should be applied to the field of simple
tension, acting everywhere in the region without a hole.

Let us consider the xy plane. The force transmitted through the arc A, B,, in
accordance with what was said before,

Fk= Sz'rlxv = Sszy (ny + ’:w )
xy

We further have
. < mtv
ey () = Fik = — Fh = — 8, Rey (0 222 )
xy

Substituting this expression into (15) and taking the integral Cauchy theorem into
account, we obtain

1
Re @uy (Cay) = — 5 SoRayan/Cay

and since Fk = [ReA® (n)]((i‘;‘l”)) k= [Re A® ()] & = [Re @y (L1y)1k, we have

i
6, = + 28 m ey T S Mo lay
2= 2 » L YT
ny (;xy - m,;,,)’ ny (gxy - mxv}a

The remaining normal and shear stresses are obtained in the same manner when considering
the xz and y2 planes.
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