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THE USE OF QUATERNIONS TO GENERALIZE THE KOLOSOV-MUSKHELISHVILI METHOD TO 

THREE-DIMENSIONAL PROBLEMS OF THE THEORY OF ELASTICITY* 

A.A. PIMENOV and V.I. PUSHKAREV 

A boundary equation is obtained for the first fundamental problem of the 
theory of elasticity using the Kolosov-Muskhelishvili method, by 
replacing the field of complex numbers by the field of Hamiltonian 
quaternions. A specific solution is given for the space with an 
elliptical cavity, subjected to a uniform tensile force at infinity. 

The elements of the algebra of generalized quaternions /l/ are as follows: I) = er,+ si + 
yi + zk. In what follows, we shall regard ez, as time, i.e. ez, = t. Thus we can write 
any function f(n) in the form of an analytic function 

f (n) = CC, + a,i + ad + a,k, a,, = a, (4 z, y, 4, n = 1, . . ., 4 

where a1 is the scalar part, and the sum of the remaining terms is the vector part. 
We can further show that 

LJa, = 0, n = att + hr + avv i a,, (1) 

The solutions of Eq.11) are harmonic functions. Using different manipulations, we can 
obtain the equations 

(at=+ aru + a,, + a,, + axr + %)a,, = 0 (2) 

whose solutions will also be harmonic functions. 
We note that of all the quaternions, the most suitable one for solving the three-dimen- 

sional problems may be the subspace V = {si -I- yi 7 zk} whose elements are vectors of a three- 
dimensional Euclidean space. In this case, however, the solutions of equations in ozl a3 
and a, will not be harmonic functions. 

Let us consider a three-dimensionalstate of stress in which the volume forces are either 
equal to zero, or are constant. The state is described by three equations of equilibrium, 
supplemented by boundary conditions /2/. In order to solve them, we shall introduce the 
following stress function: 

Since the stresses are constant with respect to time, it follows that the stress function 

cp must depend linearly on time, i.e. cp (t,s, y,z) = kt + Q (x, y,z) where k is a constant and 
'Fo (3, Y? a) is a function which depends on the coordinates. 

If the volume forces are zero or constant, the equations of compatibility can be expressed, 
in the case of a three-dimensional stress state, in the form 

y28 = 0, (1 + V) w3 + (a,, -i a,, + a,,) 8 (4) 

where v is Poisson's ratio, 8 and E are the sums of the normal and shear stresses, respect- 
ively, and '7 is the Laplace operator. Since the stresses are constant with respect to 
time, we have 

att0 = i&E = a,,6 = a& = a,,0 = 0 

Supplementing Eqs.(4) with given derivatives so as to obtain equations of the type (1) 
and (2), we have 

0 8 = 0, (1 + V) ciE + (a,, + a,, i a,, + a,, + 3,: -I a,:) 0 = 0 

From this it follows that 0 and E are harmonic functions. Therefore E must have 
conjugate functions Q, R, T. Then E +Qi + Rj + Tk will be an analytic function of n and we 
can therefore write f (n) = E + Qi + Rj + Tk. The pentuple integral in I) of this function 
represents another analytic function, say 4Y((rl). Denoting the real and imaginary parts of 
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y (3 by e, 4, r and t, we obtain 

whence y'"'(n)=~f(q). Moreover, 

attruze + ar&*:qi + aftsyr).j -!- 4rs& = Y'(~)(r))~d,n = ---','tf(tl) 

Equating all real parts in the first, second, etc. tern, we find that &,rry; e = -_%E. 
Since e, q, r and t are conjugate functions, their differentiation with respect to aixyz 
will yield 

Taking into account the fact that cp is a linear function of time, 4,.&f = 0 and 
relations (3) for shear stresses, we can write 

E= - &lxy: + arlsur -I- aflliY: + 4*,:,)9 = %y -";- ?C i z&C 

From (5) it follows that pieig-tr-f-t is a harmonic function. Thus we have, for 
any stress function cp, 

cp=ei--e-q-r-t (6) 

where e, is a harmonic function. 
We can similarly show that 

Let us express the harmonic function @ in the form of a sum of six harmonic functions 

containing conjugate functions B,,, C,, and D,,. From this we find that 

j,i (q) = O,, + B,,i + C,,j + D,,f; (IL = 1, . . ., 0) 

are analytic functions of n. 
Using arguments analogous to those used in deriving (51, we obtain 

cf=e+ B+c+dtB, 

where 8, b, c and d are conjugate functions and SO is a harmonic function. 
We can combine Eqs.(6) and (8) by writing 

(8) 

2p, = 8, f BO, 2p, = 0 - e, 2qo = b - q, 2r, = c - rr 2t, = d - t 

We have 
cp = PI + PO 4 90 + rtl + t, (9) 

where p1 is a harmonic function, and po. a,, pa and t, are suitably chosen corresponding 
conjugate functions. 

Let us introduce in (9) the functions ql, r, and t, ,which are harmonic and conjugate 
with p, and write 

6 (4 = Pl f llti + rlj + t,k 

Then we can confirm that the real part of the function 

(Pu i q,i + roi + t,q (1 - i -i - k) -t- s (qf 

is equal to the right-hand side of Eq.(9). Indeed, we can write the stress function in the 
form 

cp = Re le (n) (1 - i -i - k) -I- 6 ($1 w 



345 

We can also simplify, in turn, Eq.(lOf and write it in the form 

cp = Re iA 61% An = pa + g,i -i- r2i + @, pa = p. + go + r. + t, -I- pl 
ga = --pa + q0 - r. + t, -t ql, r, = -_pO -t q. + r0 - t, + )*I, t, = -_po - q. -t r. f t, + 8% 

where An is an analytic function, pa is a harmonic function and Q~, r, and t, are appropri- 
ately chosen conjugate functions. 

Since Bq.(lO) expresses 9 in terms of A (q), it follows that this "hypercomplex 
potential" can also be used to express the stresses. 

The hypercomplex function f(n) has the corresponding conjugate function f(ij). It is 
clear that f(q) -k f (Ti) = 2 Ref(q). Then we have 21 = A(q)+a(_i), and 

u, = uy = a', = 26, zXy = -Gh- 

r,, = -Gj, ~~~ = -Gi, G = Re A@) (q) 

Let a region V be given in the rectangular XgZ coordinate system, and let a surface o 
bounded by a three-dimensional curve h be given in the region V. Let a vector P = F,u + 
F,v+F,w be defined at every point of the surface, where F is the resultant force with 
which the material lying to the left of the surface element do acts on the material lying 
to the right of da. The components of the resultant force on the surface u are: 

where %,? and z are the components of surface forces per unit area at the given point of 
the boundary. Substituting into these equations instead of the stresses their values in terms 
of the stress function and putting x = 0, y = --aVUz'pO, z = aVzr90, we obtain 

0 

(a,:' -. &X) cos (a. z)] do 

The surface integral over CT is equal to the curvilinear 
(Stokes's formula). Taking into account the values of X, Y and 

integral over the boundary h 
2, we obtain 

It should be noted that since X = 0, it follows that the three-dimensional contour ;1 
coincides with the contour L,, which represents the projection of the contour A. onto the 
yz plane. On moving along the contour Luz from the point A,: to BvZ, the coordinate 
dz increases and dy decreases. Hence, dy must be taken with a minus sign and 

We obtain the analogous formulas for F, and Fr in the same manner. 
The surface u can be a part of a closed boundary surface which will yield, on inter- 

sections by planes, closed boundaries h in space. Projecting h onto the xy, xs and ys 
planes will yield closed boundaries L,.u,L,, and L,, in the corresponding planes. Then we 
shall find that when we move from point A to point B of the boundary h in such a manner that 
the material along the corresponding coordinate axes remains on the left-hand side at all 
times, the corresponding forces will be F%,P, and F,. Let us find these forces as functions 
of CC*, L,, and Lvrr in the form 

where all the coefficients of u, V and w are real functions. Denoting the coordinates of 
the moving point B by nxv, nrr and rlvz when it is projected onto the corresponding coordi- 
nate planes ~9, xz and ys, we can write the boundary conditions at the edge of the three- 
dimensional plane in the form 

-Re A!$ (qry) - RB Ai? (q,J - Re A$) (qvr) = A (12) 
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where A is the right-hand side of Eq.(ll). In order to obtain from this equation the three 
hypercomplex potentials, we replace the hypercomplex variables %QJ, tlx. and Qr, for any 
point in the physical region, by new hypercomplex variables c,,, c,, and cui connected by 
the relation ni = oi(&), i E {rY, 22, Yz) where (IQ(&) are appropriately chosen functions of 
&. The functions are chosen so that the points Pi’ determined by the corresponding hyper- 
complex coordinates Gi in the planes ti correspond to the points Pi (or map onto these 
points) in the corresponding ni planes. The functions which map conformly will be chosen 

in such a way that the unit circles pi= 1 in the planes 5, will map onto the curves Li. 
It is also convenient to use here polar coordinates Pi? @i instead of rectangular coordinates 

Si, Iii * The functions must be analytic at every point Pi’ which maps onto the corresponding 
"material" point Pi. A Laurent expansion over the corresponding coordinate planes can be 
used to provide such points. Then, any functions of ?li will also be functions of c,, obtained 

by replacing ni by Q(&), and we have 

AJ3) (ni) = AJ3) [~i (Ci)l = ‘Pi (fit) 

Let us expres,s the hypercomplex variables ,ni in polar coordinates Tji = r,oi, oxu = ]e fiery, 

crxz = /cP=, u yz = je'%. We note that oi is in fact ci for the characteristic points on unit 

circles. Thus the right-hand side of Eq.(12) can be expressed as a function of eir and we 

can write 
A = if,, (QJ + Iffzr (oxi) + ifvz (%J 

The function ifxv (a,,) corresponds to a load applied between the points Axy and H,, 

of the xy plane, which is equal to F,k. Similarly, the functions kf,z (GA and ifVz (G) 
correspond to the loads Fj and F,i. 

After all this the boundary condition (12) will take the following form: 

- Recp,,(o,y)-Re(PXL(~~XI)-He'PI/z (%) = ffxv(%) + kfxz 0~) + ifu, (uyA (13) 

The three-dimensional boundary condition given is an analogue of a two-dimensional con- 
dition in curvilinear coordinates /3/. We shall carry out an additional discussion for this 

solution. 
Let us consider one of the hypercomplex planes, for example the ;cy plane. Let L be a 

rectilinear curve in xy, and nsV = h(t) = z(t) i i- y(t)j its equation in which t varies from 

a and p. We shall choose an arbitrary monotonic sequence of nfl values of t: t, = a, t,, 
. . .( t, = p. A decomposition T of the curve L into n arcs I,,..., l(n-l, corresponds to 

this choice. Let f (qxg) = u (t, y) i + u (I, y) j be a function, single-valued and continuous on L. 
We shall choose a single value of the parameter t = rk; between tk and &+I , and obtain 
a single point ZI; = h (tk) = &i + Inki on every arc lx. Then we can show that 

Let L be a smooth curve. This will mean that we can find for it a parametric represen- 

tation Q.~ = h(t) = z(t) i + y(t)j (a < t < fi), such, that h(t) will have a derivative con- 

tinuous and not vanishing on the segment 1% PI. Then the following formula will hold: 

Sf(rlxu)dqxa,=S--dds--dy+ ks--udx+udy= 
I. 

i{- 1, 

L 

U[Z (t), Y (t)] z'(t) --u 15 (t), Y Wlldt + 
CL 

A 
k 5 {- v [z (t), Y (t)] + u 1~ (t), Y (~1) dt 

? 
= \ f P Ml h’ 0) dt 

a 

!14) 

f [h (t)l = iu [5 (t), y (t)l + iv Lx (tL Y (t)L 

A’ (t) = id (t) + iv (t) 

where we have utilized the following property of the integrals: 

It can also be shown that the integral theorem and integral Cauchy formula (14) for the 
hyperplanes i will also hold. 

If we assume that n* = 61i (c+) for O& (&) mm fi, (&) f nc,'&, where Hi are any positive 
constants and mi are positive constants less than unity, the coordinates in the corresponding 

planes will be expressed in terms of relations known for the ellipses. 
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Let us determine the potentials cpi(ci) which satisfy the boundary conditions (13) for 
any point ci outside the unit circle. We multiply Eq.(13) term by term by l/(ai - &). After 
this every term will remain a function of ui and can therefore be integrated over the unit 
circles yi. Using the Cauchy integral theorem for unit circles, when ci denote the points 
outside them, we obtain 

Let us consider a space with an elliptical cavity which is stress-free and where the 
stresses are caused by the application of uniform tensile force S whose projections on the 
coordinate axes are S,, S, and S,. ' 

We shall seek the analytic potentials, which should be applied to the field of simple 
tension, acting everywhere in the region without a hole. 

Let us consider the xy plane. The force transmitted through the arc A,,B,, in 
accordance with what was said before, 

We further have 

jf, (uw) = F,k = - F”k = - S,R,, gw+ m+v 
%I ) 

Substituting this expression into (15) and taking the integral Cauchy theorem into 
account, we obtain 

Rem,, (&J = -~&R,,%&, 

and since F,k = [Re A(3) (q)]:>zi; k = [Re A@) (n&l k = [Rev,, (&,)]k , we have 

The remaining normal and shear stresses are obtained in the same manner when considering 
the xz and yz planes. 

1. 
2. 
3. 
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