THE USE OF QUATERNIONS TO GENERALIZE THE KOLOSOV-MUSKHELISHVILI METHOD TO THREE-DIMENSIONAL PROBLEMS OF THE THEORY OF ELASTICITY*

A.A. PIMENOV and V.I. PUSHKAREV

A boundary equation is obtained for the first fundamental problem of the theory of elasticity using the Kolosov-Muskhelishvili method, by replacing the field of complex numbers by the field of Hamiltonian quaternions. A specific solution is given for the space with an elliptical cavity, subjected to a uniform tensile force at infinity.
The elements of the algebra of generalized quaternions /1/ are as follows: $\eta=e x_{0}+x i+$ $y j+z k$. In what follows, we shall regard $e x_{0}$ as time, i.e. $e x_{0}=t$. Thus we can write any function $f(\eta)$ in the form of an analytic function

$$
f(\eta)=\alpha_{1} \div \alpha_{2} i+\alpha_{3} j+\alpha_{1} k, \alpha_{n}=\alpha_{n}(t, x, y, z), n=1, \ldots, 4
$$

where α_{1} is the scalar part, and the sum of the remaining terms is the vector part.
We can further show that

$$
\begin{equation*}
\left.[] \alpha_{n}=0, \square\right]=\partial_{t t}+\partial_{x x}+\partial_{y y}+\partial_{i z} \tag{1}
\end{equation*}
$$

The solutions of Eq.(1) are harmonic functions. Using different manipulations, we can obtain the equations

$$
\begin{equation*}
\left(\partial_{t x}+\partial_{t y}+\partial_{t z}+\partial_{x y}+\partial_{x z}+\partial_{y z}\right) \alpha_{n}=0 \tag{2}
\end{equation*}
$$

whose solutions will also be harmonic functions.
We note that of all the quaternions, the most suitable one for solving the three-dimensional problems may be the subspace $V=\{x i+y i \div z k\}$ whose elements are vectors of a threedimensional Euclidean space. In this case, however, the solutions of equations in $\quad \alpha_{2 p} \alpha_{3}$ and α_{1} will not be harmonic functions.

Let us consider a three-dimensional state of stress in which the volume forces are either equal to zero, or are constant. The state is described by three equations of equilibrium, supplemented by boundary conditions $/ 2 /$. In order to solve them, we shall introduce the following stress function:

$$
\begin{align*}
\sigma_{x}=2 \partial_{t y y z} \varphi, & \sigma_{y}=2 \partial_{t x x=} \varphi, \quad \sigma_{z}=2 \partial_{t x x y y} \varphi \tag{3}\\
\tau_{x y}=-\partial_{t x y z} \varphi, & \tau_{x z}=-\partial_{t x y y z} \varphi, \quad \tau_{y z}=-\partial_{t x x y=} \varphi
\end{align*}
$$

Since the stresses are constant with respect to time, it follows that the stress function φ must depend linearly on time, i.e. $\varphi(t, x, y, z)=k t+\varphi_{0}(x, y, z)$ where k is a constant and $\varphi_{0}(x, y, z)$ is a function which depends on the coordinates.

If the volume forces are zero or constant, the equations of compatibility can be expressed, in the case of a three-dimensional stress state, in the form

$$
\begin{equation*}
\Gamma^{2} \theta=0,(1+v) \Gamma^{2} \mathbf{E}+\left(\partial_{x y}+\partial_{x z}+\partial_{y z}\right) \Theta \tag{4}
\end{equation*}
$$

where v is poisson's ratio, θ and E are the sums of the normal and shear stresses, respectively, and ∇^{2} is the Laplace operator. Since the stresses are constant with respect to time, we have

$$
\partial_{t t} \Theta=\partial_{t t} \mathbf{E}=\partial_{t x} \Theta=\partial_{t_{t}} \Theta=\partial_{t:} \Theta=0
$$

Supplementing Eqs. (4) with given derivatives so as to obtain equations of the type (1) and (2), we have

$$
\square \Theta=0,(1+v) \square \mathbf{E}+\left(\partial_{t x}+\partial_{t y}+\partial_{t z}+\partial_{x y}+\bar{\partial}_{x z}-\dot{-} \partial_{y z}\right) \Theta=0
$$

From this it follows that Θ and \mathbf{E} are harmonic functions. Therefore \mathbf{E} must have conjugate functions Q, R, T. Then $\mathbf{E}+Q i+R j+T k$ will be an analytic function of η and we can therefore write $f(\eta)=\mathbf{E}+Q i+R j+T k$. The pentuple integral in η of this function represents another analytic function, say $4 \Psi(\eta)$. Denoting the real and imaginary parts of
$\Psi(\eta)$ by e, q, r and t, we obtain

$$
\Psi(\eta)=e+q i+r j+t k=\frac{1}{4} \iiint \iint f(\eta) d^{5} \eta
$$

whence $\quad \Psi^{(5)}(\eta)=\frac{1}{4} f(\eta)$. Moreover,

$$
\partial_{t t x y=} e+\partial_{i t x y} q i+\partial_{i t x y=} r j+\partial_{t i x y} f k=\Psi(5)(\eta) k \partial_{i} \eta=-{ }^{1}, f(\eta)
$$

Equating all real parts in the first, second, etc. term, we find that $\partial_{t+x y s} e=-1 / \mathbf{E}$. Since e, q, r and t are conjugate functions, their differentiation with respect to will yield

$$
\begin{align*}
& \partial_{t x x y} q=-{ }_{1 / 4}^{1} \mathbf{E}, \quad \partial_{t x y y:} r=-1 /{ }_{1} \mathbf{E}, \quad \partial_{t x y: \geq} t=-{ }_{1}{ }_{1} \mathbf{E} \tag{5}\\
& \partial_{t t x y=} q=-{ }^{1}, Q, \quad \partial_{t x x y z} e={ }^{1}, \lambda Q, \quad \partial_{t x y y z} t={ }^{1}{ }_{4} Q \\
& \partial_{t x y:=} r=-{ }^{1}, Q, \quad \partial_{t t x y=} r=-1 / 4, \quad \partial_{t, x ; y=} t=-1 ; 1, R \\
& \partial_{t x y y s e}={ }^{1}{ }_{4} R, \quad \partial_{t x y=:} q=-1 / 4 R, \quad \partial_{t x y z z} t=-1,4 \mathrm{~T} \\
& \partial_{t x: y z} r={ }_{1}^{1} \mathbf{T} \mathbf{T}, \quad \partial_{t x y u: q}=-{ }_{1}^{1}, \mathbf{T}, \quad \partial_{t x y z z} e={ }_{1}^{1} \mathbf{T}
\end{align*}
$$

Taking into account the fact that φ is a linear function of time, $\partial_{1 t x y} \varphi=0$ and relations (3) for shear stresses, we can write

$$
\mathbf{E}=-\left(\partial_{t x y z}+\partial_{t x x y}+\partial_{t x y z}+\partial_{t x y z}\right) \varphi=\tau_{x y} \div \tau_{x z} \div \tau_{y z}
$$

From (5) it follows that $q+e+q+r+t$ is a harmonic function. Thus we have, for any stress function φ,

$$
\begin{equation*}
\varphi=e_{2}-e-q-r-t \tag{6}
\end{equation*}
$$

where e_{1} is a harmonic function.
We can similarly show that

$$
\begin{gathered}
\theta=\left(\partial_{t x x y}+\partial_{t t x x y}+\partial_{t t x z z}+\partial_{t t x x z}+\partial_{t y z z}+\partial_{t t y z z}+2 \partial_{t x x y y}+\right. \\
\left.2 \partial_{t x x z z}+2 \partial_{t w y z}\right) \varphi=\sigma_{x}+\sigma_{u}+\sigma_{z}
\end{gathered}
$$

Let us express the harmonic function Θ in the form of a sum of six harmonic functions

$$
\begin{align*}
& \Theta_{1}=\left(\partial_{t x x y y}+\partial_{t x x y y}\right) \uparrow, \quad \Theta_{2}=\left(\partial_{t t x y}+\partial_{t x x y y}\right) \varphi \tag{7}\\
& \Theta_{3}=\left(\partial_{t t x z z}+\partial_{t x x z z}\right) \varphi, \quad \Theta_{3}=\left(\partial_{t f x x z}+\partial_{t x x z z}\right) \varphi \\
& \Theta_{\mathbf{3}}=\left(\partial_{t t y: z}+\partial_{t p y z}\right) \tau, \quad \Theta_{\mathrm{G}}=\left(\partial_{t t y y:}+\partial_{t y z z}\right)_{\varphi}
\end{align*}
$$

containing conjugate functions B_{n}, C_{n} and D_{n}. From this we find that

$$
f_{n}(\eta)=\theta_{n}+B_{n} i+C_{n} j+D_{n} h(n=1, \ldots, 6)
$$

are analytic functions of η.
Using arguments analogous to those used in deriving (5), we obtain

$$
\begin{equation*}
\varphi=\theta+b+c+d+\theta_{0} \tag{8}
\end{equation*}
$$

where θ, b, c and d are conjugate functions and θ_{0} is a narmonic function.
We can combine Eqs.(6) and (8) by writing

$$
2 \mathbf{p}_{1}=\theta_{1}+\theta_{0}, 2 \mathbf{p}_{0}=\theta-e, 2 q_{0}=b-q, 2 r_{0}=c-r, 2 t_{0}=d-t
$$

We have

$$
\begin{equation*}
\varphi=p_{1}+p_{0}+q_{0}+r_{0}+t_{0} \tag{9}
\end{equation*}
$$

where p_{1} is a harmonic function, and p_{0}, q_{0}, r_{0} and t_{0} are suitably chosen corresponding conjugate functions.

Let us introduce in (9) the functions q_{1}, r_{1} and t_{1}, which are harmonic and conjugate with p, and write

$$
\delta(\eta)=p_{1}+q_{1} i+r_{1} j+t_{1} k
$$

Then we can confirm that the real part of the function

$$
\left(p_{0}+q_{0} i+r_{0} j+t_{0} k\right)(1-i-j-k)+\delta(\eta)
$$

is equal to the right-hand side of Eq. (9). Indeed, we can write the stress function in the form

$$
\begin{equation*}
\varphi=\operatorname{Re}[\varepsilon(\eta)(1-i-j-k)+\delta(\eta)] \tag{10}
\end{equation*}
$$

We can also simplify, in turn, Eq. (10) and write it in the form

$$
\begin{gathered}
\varphi=\operatorname{Re}[\Delta(\eta)], \Delta \eta=p_{2}+q_{2} i+r_{2}+t_{2} h, p_{2}=p_{0}+q_{0}+r_{0}+t_{0}+p_{1} \\
q_{2}=-p_{0}+q_{0}-r_{0}+t_{0}+q_{1}, r_{2}=-p_{0}+q_{0}+r_{0}-t_{0}+r_{1}, t_{2}=-p_{0}-q_{0}+r_{0}+t_{0}+t_{1}
\end{gathered}
$$

where $\Delta \eta$ is an analytic function, p_{2} is a harmonic function and g_{2}, r_{2} and t_{2} are appropriately chosen conjugate functions.

Since Eq. (10) expresses φ in terms of $\Delta(\eta)$, it follows that this "hypercomplex potential" can also be used to express the stresses.

The hypercomplex function $f(\eta)$ has the corresponding conjugate function $f(\bar{\eta})$. It is clear that $f(\eta)+\bar{f}(\bar{\eta})=2 \operatorname{Re} f(\eta)$. Then we have $2 \varphi=\Delta(\eta)+\bar{\Delta}(\bar{\eta})$, and

$$
\begin{gathered}
\sigma_{x}=\sigma_{y}=\sigma_{z}=2 G, \tau_{x y}=-G k \\
\tau_{x z}--G j, \tau_{y z}=-G i, G=\operatorname{Re} \Delta^{(6)}(\eta)
\end{gathered}
$$

Let a region V be given in the rectangular $x y z$ coordinate system, and let a surface σ bounded by a three-dimensional curve λ be given in the region V. Let a vector $F=F_{x} u+$ $F_{y} v+F_{z} w$ be defined at every point of the surface, where F is the resultant force with which the material lying to the left of the surface element do acts on the material lying to the right of $d \sigma$. The components of the resultant force on the surface σ are:

$$
F_{x}=\iint_{\sigma} \overline{\mathbf{X}} d \sigma, \quad F_{y}=\iint_{\sigma} \bar{Y} d \sigma, \quad F_{z}=\iint_{\sigma} \bar{Z} d \sigma
$$

where $\overline{\mathbf{X}}, \bar{Y}$ and \bar{Z} are the components of surface forces per unit area at the given point of the boundary. Substituting into these equations instead of the stresses their values in terms of the stress function and putting $\quad \mathbf{X}=0, Y=-\partial_{y y z} \varphi_{0}, Z=\partial_{y z z} \varphi_{0}$, we obtain

$$
\begin{gathered}
F_{x}=\iint_{\sigma}\left[\left(\partial_{v} Z-\partial_{z} Y\right) \cos (n, x)+\left(\partial_{z} X-\partial_{x} Z\right) \cos (n, y)+\right. \\
\left.\left(\partial_{y} Y-\partial_{\psi} X\right) \cos (n, z)\right] d \sigma
\end{gathered}
$$

The surface integral over σ is equal to the curvilinear integral over the boundary
λ (Stokes's formula). Taking into account the values of X, Y and Z, we obtain

$$
F_{x}=\int_{\lambda}-a_{y}\left(\partial_{y z} \varphi_{0}\right) d y+\partial_{z}\left(\partial_{y z} \Psi_{0}\right) d z
$$

It should be noted that since $\mathbf{X}-0$, it follows that the three-dimensional contour λ coincides with the contour $L_{y z}$ which represents the projection of the contour λ onto the $y z$ plane. On moving along the contour $L_{y z}$ from the point $A_{y z}$ to $B_{y z}$, the coordinate $d z$ increases and $d y$ decreases. Hence, $d y$ must be taken with a minus sign and

We obtain the analogous formulas for F_{y} and F_{z} in the same manner.
The surface σ can be a part of a closed boundary surface which will yield, on intersections by planes, closed boundaries λ in space. Projecting λ onto the $x y, x z$ and $y z$ planes will yield closed boundaries $L_{x y} L_{x:}$ and $L_{y z}$ in the corresponding planes. Then we shall find that when we move from point \boldsymbol{A} to point \mathbf{B} of the boundary λ in such a manner that the material along the corresponding coordinate axes remains on the left-hand side at all times, the corresponding forces will be F_{x}, F_{y} and F_{z}. Let us find these forces as functions of $L_{x y}, L_{x z}$ and $L_{y x}$, in the form

$$
\begin{align*}
& F_{x} u+F_{y} v+F_{z} w=\frac{1}{2}\left\{\left[f_{11}\left(L_{x y}\right) u+f_{12}\left(L_{x y}\right) v\right]+\right. \tag{11}\\
& \left.\left[f_{21}\left(L_{x z}\right) u+f_{22}\left(L_{x z}\right) w\right]+\left[f_{31}\left(L_{y z}\right) v+f_{3 z}\left(L_{y z}\right) w\right]\right\}
\end{align*}
$$

where all the coefficients of u, v and w are real functions. Denoting the coordinates of the moving point B by $\eta_{x y}, \eta_{x z}$ and $\eta_{y z}$ when it is projected onto the corresponding coordinate planes $x y, x z$ and $y z$, we can write the boundary conditions at the edge of the threedimensional plane in the form

$$
\begin{equation*}
-\operatorname{Re} \Delta_{x y}^{(3)}\left(\eta_{x y}\right)-\operatorname{Re} \Delta_{x z}^{(3)}\left(\eta_{x z}\right)-\operatorname{Re} \Delta_{y z}^{(3)}\left(\eta_{y z}\right)=\Delta \tag{12}
\end{equation*}
$$

where Δ is the right-hand side of Eq.(11). In order to obtain from this equation the three hypercomplex potentials, we replace the hypercomplex variables $\eta_{x y}, \eta_{x}$ and $\eta_{y z}$, for any point in the physical region, by new hypercomplex variables $\zeta_{x y}, \zeta_{x z}$ and $\zeta_{y z}$ connected by the relation $\eta_{i}=\omega_{i}\left(\zeta_{i}\right), i \in\{x y, x z, y z\}$ where $\omega_{i}\left(\zeta_{i}\right)$ are appropriately chosen functions of ζ_{i}. The functions are chosen so that the points P_{i}^{\prime} determined by the corresponding hypercomplex coordinates ζ_{i} in the planes ζ_{i} correspond to the points P_{i} (or map onto these points) in the corresponding η_{i} planes. The functions which map conformly will be chosen in such a way that the unit circles $\rho_{i}=1$ in the planes ζ_{i} will map onto the curves L_{i}. It is also convenient to use here polar coordinates ρ_{i}, Θ_{i} instead of rectangular coordinates ξ_{i}, η_{i}. The functions must be analytic at every point P_{i}^{\prime} which maps onto the corresponding "material" point P_{i}. A Laurent expansion over the corresponding coordinate planes can be used to provide such points. Then, any functions of η_{i} will also be functions of ζ_{i}, obtained by replacing η_{i} by $\omega_{i}\left(\zeta_{i}\right)$, and we have

$$
\Delta_{i}{ }^{(3)}\left(\eta_{i}\right)=\Delta_{i}{ }^{(3)}\left[\omega_{i}\left(\zeta_{i}\right)\right]=\varphi_{i}\left(\zeta_{i}\right)
$$

Let us express the hypercomplex variables η_{i} in polar coordinates $\eta_{i}=r_{i} \sigma_{i}, \sigma_{x y}=j e^{k \theta_{x y}}$, $\sigma_{x z}=k e^{j \theta_{x z}}, \sigma_{y z}-j e^{i t_{y z}}$. We note that σ_{i} is in fact ζ_{i} for the characteristic points on unit circles. Thus the right-hand side of Eq. (12) can be expressed as a function of σ_{i}, and we can write

$$
\Delta=j f_{x y}\left(\sigma_{x y}\right)+h f_{x z}\left(\sigma_{x z}\right)+j f_{y z}\left(\sigma_{y z}\right)
$$

The function $j f_{x y}\left(\sigma_{x y}\right)$ corresponds to a load applied between the points $\mathbf{A}_{x y}$ and $\mathbf{B}_{x y}$ of the $x y$ plane, which is equal to $F_{z} k$. Similarly, the functions $k f_{x z}\left(\sigma_{x z}\right)$ and $j f_{y z}\left(\sigma_{y z}\right)$ correspond to the loads $F_{y j}$ and $F_{x} i$.

After all this the boundary condition (12) will take the following form:

$$
\begin{equation*}
-\operatorname{Re} \varphi_{x y}\left(\sigma_{x y}\right)-\operatorname{Re} \varphi_{x z}\left(\sigma_{x z}\right)-\operatorname{Re} \varphi_{y z}\left(\sigma_{y z}\right)=j f_{x y}\left(\sigma_{x y}\right)+k f_{x z}\left(\sigma_{x z}\right)+j f_{y z}\left(\sigma_{y z}\right) \tag{13}
\end{equation*}
$$

The three-dimensional boundary condition given is an analogue of a two-dimensional condition in curvilinear coordinates $/ 3 /$. We shall carry out an additional discussion for this solution.

Let us consider one of the hypercomplex planes, for example the xy plane. Let L be a rectilinear curve in $x y$, and $\eta_{x y}=\lambda(t)=x(t) i+y(t) j$ its equation in which t varies from α and β. We shall choose an arbitrary monotonic sequence of $n+1$ values of $t: t_{0}=\alpha, t_{1}$, $\ldots, t_{n}=\beta$. A decomposition \mathbf{T} of the curve L into n ares $l_{0}, \ldots, l_{(n-1)}$ corresponds to this choice. Let $f\left(\eta_{x y}\right)=u(x, y) i+v(x, y) j$ be a function, single-valued and continuous on L. We shall choose a single value of the parameter $t=\tau_{k}$; between t_{k} and t_{k+1}, and obtain a single point $\zeta_{j k}^{*}=\lambda\left(\tau_{k}\right)=\xi_{k} i+\eta_{k} j$ on every arc I_{k}. Then we can show that

$$
\lim _{0_{T} \rightarrow 0} \sum_{k=0}^{n-1} f\left(\zeta_{k}\right)\left(\eta_{k+1}-\eta_{k}\right)=\int_{L} f\left(\eta_{x y}\right) d \eta_{x y}
$$

Let L be a smooth curve. This will mean that we can find for it a parametric representation $\eta_{x y}=\lambda(t)=x(t) i+y(t) j \quad(\alpha \leqslant l \leqslant \beta)$, such, that $\lambda(t)$ will have a derivative continuous and not vanishing on the segment $[\alpha, \beta]$. Then the following formula will hold:

$$
\begin{gather*}
\int_{L} f\left(\eta_{x y}\right) d \eta_{x y}=\int_{L}-u d x-v d y+k \int_{L}-v d x+u d y= \tag{14}\\
\int_{\alpha}^{\beta}\left\{-u[x(t), y(t)] x^{\prime}(t)-v[x(t), y(t)]\right\} d t+ \\
k \int_{\alpha}^{\beta}\{-v[x(t), y(t)]+u[x(t), y(t)]\} d t=\int_{\alpha}^{\beta} f[\lambda(t)] \lambda^{\prime}(t) d t \\
f[\lambda(t)]=i u[x(t), y(t)]+j v[x(t), y(t)], \\
\lambda^{\prime}(t)=i x^{\prime}(t)+j y^{\prime}(t)
\end{gather*}
$$

where we have utilized the following property of the integrals:

$$
\int_{L} \sum_{k=1}^{\mathrm{p}} c_{k} f_{k}\left(\eta_{x y}\right) d \eta_{x y}=\sum_{k=1}^{\mathrm{p}} c_{k} \int_{L} f_{k}\left(\eta_{x y}\right) d \eta_{x y}
$$

It can also be shown that the integral theorem and integral Cauchy formula (14) for the hyperplanes i will also hold.

If we assume that $\eta_{i}=\omega_{i}\left(\zeta_{i}\right)$ for $\omega_{i}\left(\zeta_{i}\right)=R_{i}\left(\zeta_{i}\right)+m_{i}{ }^{\prime} \zeta_{i}$, where R_{i} are any positive constants and m_{i} are positive constants less than unity, the coordinates in the corresponding planes will be expressed in terms of relations known for the ellipses.

Let us determine the potentials $\varphi_{i}\left(\zeta_{i}\right)$ which satisfy the boundary conditions (13) for any point ζ_{i} outside the unit circle. We multiply Eq. (13) term by term by $1 /\left(\sigma_{i}-\zeta_{i}\right)$. After this every term will remain a function of σ_{i} and can therefore be integrated over the unit circles γ_{i}. Using the Cauchy integral theorem for unit circles, when ζ_{i} denote the points outside them, we obtain

$$
\operatorname{Re} \varphi_{i}\left(\zeta_{i}\right)=\frac{b_{i}}{4 \pi} \int_{\gamma_{i}} \frac{f_{i}\left(\sigma_{i}\right)}{\sigma_{i}-\zeta_{i}} d \sigma_{i}, \quad b_{x y}=\frac{j}{k}, \quad b_{x z}=\frac{k}{j}, \quad b_{y z}=\frac{j}{i}
$$

Let us consider a space with an elliptical cavity which is stress-free and where the stresses are caused by the application of uniform tensile force S whose projections on the coordinate axes are S_{x}, S_{y} and S_{x}.

We shall seek the analytic potentials, which should be applied to the field of simple tension, acting everywhere in the region without a hole.

Let us consider the $x y$ plane. The force transmitted through the arc $\mathbf{A}_{x y} \mathbf{B}_{x y}$ in accordance with what was said before,

$$
F_{z}{ }^{\circ} k=S_{z} \eta_{x y}=S_{z} R_{x y}\left(\sigma_{x y}+\frac{m_{x y}}{\sigma_{x y}}\right)
$$

We further have

$$
j f_{x y}\left(\sigma_{x y}\right)=F_{z} k=-F^{c} k=-S_{z} R_{x y}\left(\sigma_{x y}+\frac{m_{x y}}{\sigma_{x y}}\right)
$$

Substituting this expression into (15) and taking the integral Cauchy theorem into account, we obtain

$$
\operatorname{Re} \varphi_{x y}\left(\zeta_{x y}\right)=-\frac{1}{2} S_{z} R_{x y} m_{x y} / \zeta_{x y}
$$

and since $\quad F_{z} k=\left[\operatorname{Re} \Delta^{(3)}(\eta)\right]_{\left(A_{x y}\right)}^{\left(\mathbf{B}_{x y}\right)} k=\left[\operatorname{Re} \Delta^{(3)}\left(\eta_{x y}\right)\right] k=\left[\operatorname{Re} \varphi_{x y}\left(\zeta_{x y}\right)\right] k$, we have

$$
\sigma_{z}=+\frac{2 S_{z} m_{x y} \zeta_{x y}^{37}}{R_{x y}\left(\zeta_{x y}^{2}-m_{x y}\right)^{3}}, \quad \tau_{x y}=-\frac{S_{z} m_{x y} \zeta_{x y}^{3}}{R_{x y}\left(\zeta_{x y}^{2}-m_{x y}\right)^{3}} k
$$

The remaining normal and shear stresses are obtained in the same manner when considering the $x z$ and $y z$ planes.

REFERENCES

1. VAN DER WARDEN B.L., Algebra. Nauka, Moscow, 1976.
2. TIMOSHENKO S.P. and GOODIER G., Theory of Elasticity Nauka, Moscow, 1979.
3. MUSKHELISHVILI N.I., Certain Fundamental Problems of the Mathematical Theory of Elasticity. Izd-vo, Akad. Nauk, SSSR, Moscow, 1954.
